Roll No.

E-3830

M. Sc./M. A. (Final) EXAMINATION, 2021

MATHEMATICS

(Optional)

Paper Fourth (i)

(Operations Research)

Time : Three Hours]

[Maximum Marks : 100

Note : All questions are compulsory. Attempt any *two* parts from each question. All questions carry equal marks.

Unit—I

1. (a) For the following linear programming problem : Maximize :

$$z = 3x_1 + 5x_2$$

subject to the constraints :

$$x_1 + x_2 \le 1$$

 $2x_1 + 3x_2 \le 1$
 $x_1, x_2 \ge 0.$

obtain the variations in c_j (j = 1, 2) which are permitted without changing the optimal solutions.

P. T. O.

(b) Apply the principle of duality to solve the following linear programming problem :

Maximize :

$$z = 2x_1 + x_2$$

Subject to the constraints :

$$x_{1} + 2x_{2} \le 10$$
$$x_{1} + x_{2} \le 6$$
$$x_{1} - x_{2} \le 2$$
$$x_{1} - 2x_{2} \le 1$$
$$x_{1}, x_{2} \ge 0.$$

(c) For the following parametric linear programming problem :

Maximize :

$$z = (3 - 6\lambda)x_1 + (2 - 2\lambda)x_2 + (5 + 5\lambda)x_3$$

Subject to the constraints :

$$x_1 + 2x_2 + x_3 \le 430$$
$$3x_1 + 2x_3 \le 460$$
$$x_1 + 4x_2 \le 420$$
$$x_1, x_2, x_3 \ge 0.$$

Find the range of λ over which the solution remains basic feasible and optimal.

Unit—II

2. (a) Solve the transportation problem with the cost coefficients, demands and supplies as given in the following table :

Origin	W ₁	W ₂	W ₃	W_4	Supply
O ₁	1	2	-2	3	70
O ₂	2	4	0	1	38
O ₃	1	2	-2	5	32
Demand	40	28	30	42	

(b) Find the shortest path from *a* to *z* in the following weighted graph :

P. T. O.

 (c) A small assembly plant assembles PCs through 9 interlinked stages according to the following precedence/ process :

Stage from to	Duration (hours)
1—2	4
1—3	12
1—4	10
2—4	8
2—5	6
3—6	8
4—6	10
5—7	10
6—7	0
6—8	8
7—8	10
8—9	6

- (i) Draw an arrow diagram (network) representing above assembly work.
- (ii) Tabulate earliest start, earliest finish, latest start and latest finish time for all the stages.
- (iii) Find the critical path and the assembly duration.
- (iv) Tabulate total float, free float and independent float.

Unit—III

3. (a) Solve the following L. P. P. by dynamic programming approach :

Minimize :

$$z = x_1^2 + 2x_2^2 + 4x_3$$

Subject to the constraints :

$$x_1 + 2x_2 + x_3 \ge 8$$
$$x_1, x_2, x_3 \ge 0.$$

(b) Two companies A and B are competing for the same product. Their different strategies are given in the following payoff matrix :

Company A

Company B $\begin{bmatrix} 2 & -2 & 3 \\ -3 & 5 & -1 \end{bmatrix}$

Use linear programming to determine the best strategies for both the players.

(c) Describe the branch and bound method for the solution of integer programming problem.

Unit—IV

- 4. (a) Explain blending problem.
 - (b) Formulate petroleum refinery operations as a linear programming problem.
 - (c) Explain Leontief system.

Unit—V

5. (a) Use Beale's method to solve the N. L. P. P. :

Maximize :

$$z = 10x_1 + 25x_2 - 10x_1^2 - x_2^2 + 4x_1x_2$$

Subject to the constraints :

$$x_1 + 2x_2 \le 10$$
$$x_1 + x_2 \le 9$$
$$x_1, x_2 \ge 0.$$

(b) Using Wolfe's method to solve the following Q. P. P. : Maximize :

$$z = 4x_1 + 6x_2 - 2x_1^2 - 2x_2^2 - 2x_1x_2$$

Subject to the constraints :

$$x_1 + 2x_2 \le 2$$
$$x_1, x_2 \ge 0.$$

(c) What do you mean by quadratic programming problem ? How does quadratic programming problem differ from linear programming problem ?